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Abstract
Electron and energy transport through a two-level molecule (quantum dot) with intra- and
inter-level Coulomb correlations is studied using the non-equilibrium Green function
formalism. Thermoelectric coefficients are determined in the regime of linear transport for a
wide range of gate voltages and temperature. At low temperatures Coulomb blockade effects
lead to oscillations of thermal conductance which are well correlated with oscillations in
electron conductance. Due to different probabilities of particular one- and two-particle
configurations, the intensities of the peaks corresponding to resonant states are different, which
results in the selection of channels active in the transport. Additional selection can be obtained
for molecules with level-dependent tunnelling rates to external electrodes. In such systems,
channels with strongly reduced heat transfer can appear, which results in an enhancement of the
thermal efficiency.

1. Introduction

Thermoelectric effects in low dimensional structures and
nanoscale systems have been recently widely investigated
in view of future applications of energy conversion devices
in nanoelectronics [1–11]. Studies of nanosystems also
offer a new insight into the Coulomb blockade effect and
are related to novel phenomena which are of fundamental
interest. Enhanced thermoelectric efficiency was reported
for new materials [1–5], silicon nanowires [7, 9] as well
as for molecular junctions [12, 13]. The tendency of
a system towards thermoelectricity is described by the
thermoelectric figure of merit Z T = S2GT/κ , where T
denotes the temperature, G and κ represent the electrical
and thermal conductance, and S is the Seebeck coefficient,
which is defined as the ratio of the voltage drop �V
generated by the temperature difference �T . The high
values of Z T measured in new materials can be attributed to
suppression of the lattice thermal conductance [1–5]. Small
contributions to κ due to phonons are also expected in
nanostructures containing quantum dots (QD) and molecular
junctions [6, 12]. In single-electron devices a violation of the
Wiedemann–Franz law is observed and it can account for the
enhancement of the thermoelectric efficiency [12, 13]. Giant
magnetothermoelectric power was measured in multilayered
nanopillars [14]. The Seebeck coefficient was investigated in a
variety of nanoscale systems such as atomic-size wires [15],

Si nanowires [7, 9], quantum dots [16] and molecular
junctions [6, 8].

Many theoretical approaches have been proposed to study
thermoelectric effects in nanostructures [12, 13, 17–39]. The
figure of merit was investigated for molecular junctions
within density functional theory, and a strong enhancement of
thermoelectric efficiency was found [13]. Model calculations
were used to study electron and energy transport through
Coulomb islands [24–30, 37] and single-level quantum dots
in the Coulomb blockade [17, 38, 39] as well as in Kondo
regimes [31–36]. Oscillations of electron thermal conductance
κ , similar to those in electrical conductance, were obtained
for Coulomb islands [24, 29, 30, 37]. The effects of the
interplay between the charging energy, thermal energy and the
confinement on Coulomb oscillations were discussed [30, 37].
In the quantum limit the periodicity of the oscillations of
thermal conductance is the same as in the Coulomb blockade
oscillations of the conductance G, but the intensities of peaks
in κ are smaller than those predicted by the Wiedemann–
Franz law [30]. The dependence of κ on the energy level
spacing �E and the thermal energy shows that quantum
confinement is responsible for the fast decrease of electron
thermal conductance of the dot. The thermopower of a QD also
oscillates as a function of a gate voltage [24, 27]. The shape
of the peaks strongly depends on temperature. In the quantum
regime with �E higher than kT , an additional fine structure
can develop [27].
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The interplay between thermoelectric and spin effects in
the Coulomb blockade regime was studied for a single-level
QD coupled to ferromagnetic electrodes [38, 39]. It was found
that thermopower as well as figure of merit depend on the
magnetic configuration of the system [39].

In the present paper we use the non-equilibrium Green
function formalism to study the thermoelectric properties of a
multilevel quantum dot/molecule as well as two coupled dots.
Applying the method proposed by Chang and Kuo [40, 41] we
take into account the probabilities of single and two particle
configurations in a multilevel dot with intra- and inter-level
Coulomb correlations. The probabilities strongly influence
the peak intensities in electrical and thermal conductance
leading to the selection of channels active in the transport.
Additional selection of channels can be obtained for a molecule
with two orbital levels coupled to the leads with considerably
different coupling strengths. The possibility of selection of
accessible channels allows us to achieve regimes in which
the thermal conductance is considerably suppressed, whereas
the thermopower can be enhanced. In such conditions high
thermoelectric efficiency can be obtained. Changes of the
thermoelectric properties of two quantum dots, when the inter-
dot coupling strength is tuned, are also discussed.

2. Electron and energy transport in Green function
formalism

The system to be considered consists of a quantum dot or a
molecule attached to external electrodes and is described by
the Hamiltonian: H = HD + He + HT. The first term HD takes
the form

HD =
∑

iσ

εi d
†
iσ diσ + 1

2

∑

i jσσ ′
Ui j d

†
iσ diσ d†

jσ ′d jσ ′ (1)

and corresponds to the central region in a form of small QD
with discrete levels εi = εi0 + eVg active in transport. Level
positions can be tuned using the gate voltage Vg. On site intra-
level as well as inter-level Coulomb interactions are described
by the second term in HD (equation (1)) and Ui j represent the
appropriate Hubbard parameters. d†

iσ (diσ ) denotes here the
creation (annihilation) operator of an electron on the dot in the
state iσ .

The term He = ∑
β=L,R,kσ εkβc†

kβσ ckβσ corresponds to
the left (β = L) and right (β = R) electrodes, in which
electrons are treated as non-interacting particles with energy
εkβ . The two leads are assumed to be in local equilibrium
with temperature Tβ and chemical potential μβ . Tunnelling
processes between the central part and the electrodes are
described by the third term in the Hamiltonian H , which
is taken in a standard form: HT = ∑

βkiσ (V β

ki c
†
kβσ diσ +

V ∗β

ki d†
iσ ckβσ ). V β

ki are elements of the tunnelling matrix
corresponding to the level i .

Electric and heat currents induced due to presence of a
small voltage �V = 1

e (μL − μR) and temperature gradient
�T = TL − TR can be written as (see e.g. [42]): I =
e2L0�V + e

T L1�T , IQ = −eL1�V − 1
T L2�T with Ln =

− 1
h

∫
dET (E)(E − μ)n ∂ f

∂ E . f denotes here the Fermi–Dirac

distribution function. Transmission T (E) is given in the
form: T (E) = ∑

jσ �L
j �

R
j /(�

L
j + �R

j )i(Gr
jσ − Ga

jσ ) and

Gr(a)
jσ represents the Fourier transform of the appropriate Green

function. �
β

j defined as �
β

j = 2π
∑

k |V β

k j |2δ(E − εkβ)

describes coupling of the dot level j with the electrode β .
In the following it is assumed in the form: �

β

j = �[1 −
(−1) j Q] with � treated as a parameter independent of energy.
Moreover, we limit the discussion to the two-level system with
j = 1, 2, while 0 � Q < 1 describes the coupling strength of a
given level with electrodes. For Q = 0 both levels are coupled
with electrodes with the same strength �. As Q increases, the
level with j = 1 becomes strongly coupled to both electrodes,
whereas the second one with j = 2 is weakly coupled; their
couplings are described by �

β

1 = �(1 + Q), �
β

2 = �(1 − Q),
respectively.

To determine Green functions G jσ (E) = 〈〈d jσ , d†
jσ 〉〉 the

equation of motion method is used. This approach, which
allows one to find expressions for G jσ in QD-systems with
multiple energy levels in the Coulomb blockade regime, was
recently proposed by Chang and Kuo [40] and will be applied
here to study electron and heat transfer. Following this
procedure we write the retarded Green function in the form:

Gr
jσ (E)

=
2∑

k=0

pk

(
1 − n j−σ

E − ε j − Ak − �r
j

+ n j−σ

E − ε j − U j − Ak − �r
j

)
.

(2)

The summation is over possible configurations with the level
l = − j (l = 2 for j = 1 and l = 1 for j = 2)
occupied by zero, one or two particles, respectively. pk denotes
here the probability factor of a given configuration k and is
determined by the average one-particle occupation numbers
nlσ = 〈d†

lσ dlσ 〉 and two-particle occupations clσ = 〈nl−σ nlσ 〉
in a following way: p0 = 1 − (nlσ + nl−σ ) + clσ , p1 =
nlσ + nl−σ − 2clσ , p2 = clσ . They give, respectively,
the probability of the configuration with no particle, with
one and two particles in the level l different from j . On
the other hand, the level j , through which the electron can
tunnel, can be empty (with probability 1 − n j−σ ) or singly
occupied with probability n j−σ . Ak in the denominator denotes
the sum of all interactions seen by the electron in the level
j due to other particles occupying the level l = − j in
configuration k, A0 = 0, A1 = U jl and A2 = 2U jl . The
occupation numbers nlσ and clσ are expressed in terms of
lesser Green functions: nlσ = −i

∫
dE
2π

〈〈dlσ , d†
lσ 〉〉<, clσ =

−i
∫

dE
2π

〈〈dlσ d+
l−σ dl−σ , d†

lσ 〉〉<. In the Coulomb blockade
regime the lesser functions can be calculated according to
the equation of motion method [43]. This allows one to
express the lesser functions in terms of one- or two-particle
retarded (advanced) Green functions. Then, G<

lσ takes the
form: G<

lσ = −[(�L
l fL + �R

l fR)/(�L
l + �R

l )](Gr
lσ − Ga

lσ )

and similar expression can be written for the two-particle lesser
function, whereas the retarded (advanced) ones are calculated
from the appropriate equation of motion. Finally, one obtains a
set of algebraic equations for one- and two-particle occupation
numbers nlσ , clσ , which are solved numerically.
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a b

Figure 1. Electrical conductance G as a function of gate voltage for several values of parameter Q (for kT = 2� (a)) and several values of kT
(for Q = 0.9 (b)) calculated using the following parameters: � = 0.01 meV, U1 = U2 = 2 meV, U12 = 1 meV, ε10 = −0.05 meV,
�ε = ε2 − ε1 = 0.6 meV.

3. Numerical results

Numerical calculations of electron and energy transport were
performed with use of the following parameters: � =
0.01 meV, U1 = U2 = 2 meV, U12 = 1 meV, ε10 =
−0.05 meV, �ε = ε2 − ε1 = 0.6 meV and for different values
of Q, which characterizes the coupling strength of a given level
with external electrodes. Note, that for molecules the coupling
strengths of different molecular orbitals to external electrodes
may vary strongly due to different spatial distributions of the
corresponding wavefunctions [44, 45]. The approach can be
also applied to two QDs, with different energy levels ε1 and
ε2, that are capacitively coupled to each other and attached to
external electrodes. The coupling strength to the leads can,
then, be varied for each dot separately.

3.1. Electron transport

Although the electric conductance in similar systems has been
a subject of many papers, we briefly discuss the problem and
present the results obtained for linear conductance G = e2 L0,
so they could be compared with the behaviour of thermal
conductance and thermopower. The conductance as a function
of gate voltage Vg, which allows one to tune dot energy levels,
is presented in figure 1 for several values of Q and several
values of kT . For Q = 0 the levels are equally coupled with
the leads and both levels are active in the electron transport. At
low temperatures (kT = 2�) the Coulomb blockade effect is
important and thin peaks can be observed when the appropriate
energy level crosses the Fermi level in the leads (μ = 0). The
intensity of the peak strongly depends on the probability of a
given configuration. For Q = 0 the conductance shows four
high peaks of equal intensity. Peaks 1 and 3 correspond to the
situation when either ε1 or ε1 + U + U12 crosses the Fermi
level in the electrodes. In the first case with ε1 crossing the
Fermi level, the high probability is obtained when both levels
are empty, whereas in the second one, with ε1 + U + U12

crossing the Fermi level, it is obtained when both levels are
singly occupied. Similarly, a high intensity can be observed
when ε2 + U12 or ε12 + U + 2U12 cross the Fermi level (peaks
2 and 4 in figure 1(a)), as the appropriate configurations with
level 1 being singly or doubly occupied are highly probable.
On the other hand, the probability of the configuration in which

level 1(2) is singly occupied and level 2(1) is empty, is very
small for the assumed parameters, so the line corresponding
to ε1 + U(ε2 + U) crossing the Fermi level does not appear
in the linear conductance at low temperatures. When Q
increases, level 1 becomes strongly coupled to the electrodes
and �1 = �(1 + Q), while level 2 is gradually decoupled as
�2 = �(1 − Q). Therefore, the intensities of peaks 1 and
3 increase, while 2 and 4 decrease with Q. For Q = 0.95
level 2 is practically decoupled and becomes inactive in the
transport. Then, electrons are mainly transmitted through
empty and singly occupied level 1 which leads to very high and
narrow peaks in the conductance (denoted as 1 and 3). With
an increase of temperature the peaks become wider and lower
(figure 1(b)). Coulomb blockade effects are less significant and
are practically negligible for kT > 16�. Instead of single, well
separated peaks, a band with broad maxima starts to develop.

3.2. Thermal conductance

The thermal conductance κ , determined from the heat flux
IQ = −κ�T under the condition that charge current vanishes,

is equal to κ = 1
T (L2 − L2

1
L0

) [42]. The conductance calculated
as a function of gate voltage for several values of parameter
Q is presented in figure 2. At low temperatures (kT =
2�) and Q = 0 well-defined peaks can be seen, which
are correlated with the peaks in the electrical conductance
spectrum (figure 1(a)). However, now the maxima are much
wider than those appearing in G. With an increase of Q
the peak intensity changes and for high values of Q the
spectrum is dominated by peaks 1 and 3, which indicates
that states ε1 and ε1 + U + U12 are mainly involved in
energy transfer due to the strong coupling of level 1 with
the electrodes. The influence of temperature on the thermal
conductance is presented in figure 3. κ as a function of gate
voltage and temperature is depicted in figure 3(a) and several
cross-sections corresponding to different values of temperature
are given in figure 3(b). At higher temperatures the thermal
conductance increases and more states become involved in
the transport. The intensities of the peaks as well as their
widths increase considerably and finally, for kT > 16�,
a wide band develops. Within the band, several peaks
corresponding to high values of κ can be observed. The
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Figure 2. Thermal conductance as a function of gate voltage for
several values of parameter Q and kT = 2�. Other parameters as in
figure 1.

presented behaviour of κ is considerably different from the
dependence found for the charge conductance G depicted in
figure 1. The origin of this behaviour can be accounted for
as follows. When the temperature is increasing, the thermal
distribution of electrons becomes broader and due to different
energy weighting tunnelling electrons contribute differently to
the charge and heat conductance. Thermal conductance κ

increases considerably with temperature as contributions from
electrons and holes to the heat conductance add constructively,
whereas such contributions to charge conductance compensate.
Moreover, additional channels open and contribute to κ ,
leading to high peaks, which can be easily seen at high
temperatures within the wide band. For small gate voltages
such a peak appears when the state with energy ε1 + U12

is close to the Fermi energy. It corresponds to the situation
when level 2 is singly occupied. Similarly, at higher gate
voltages the heat transport takes place through the channel with
energy ε1 + U as well as through channel ε1 + U + 2U12

in which levels ε1 and ε2 are singly and doubly occupied,
respectively. Although level 2 is weakly coupled to the
electrodes a considerable contribution to the high temperature
spectrum appears when the state ε2 + U12 is close to the Fermi
energy. The probability of all these states can be enhanced
due to temperature. Peaks due to the channels, accessible at
high temperatures, are strongly broadened and overlap with

each other as well as with a wide and flat band, which evolved
from peaks 1 and 3, leading to considerable enhancement of
energy transfer. So, they start to dominate the conductance
spectrum. On the other hand, due to strong broadening the
thermal conductance is relatively low in the region of gate
voltages corresponding to peaks 1 and 3. This lowering can
be very clearly seen in the middle of the band, as it leads
to a valley which practically divides the whole band into two
subbands. It should also be noted that for such values of gate
voltage the corresponding states are empty or singly occupied,
so such configurations are less probable at high temperatures.
On the other hand, they give the main contribution to the
heat transport at low temperatures. Therefore, due to different
probabilities dependent on one- and two-particle occupation
numbers certain channels are accessible and take part in the
heat transfer, whereas some channels are practically inactive.
This selection of accessible channels strongly depends on
temperature.

3.3. Thermopower and thermal efficiency

Thermopower S is determined as the voltage drop induced by
the temperature gradient, under the condition that the charge
current vanishes, I = 0. This leads to the following formula
for S = �V

�T = − 1
eT

L1
L0

.
In nanostructures, due to quantum confinement and

Coulomb blockade effects the Seebeck coefficient S shows
oscillations when the gate voltage is varied [29]. Similar
behaviour is obtained for the system under consideration, as
presented in figure 4. At low temperatures thermopower varies
sharply and ten maxima and minima can easily be seen. The
behaviour of S can be explained as follows. When one of
the states, say ε1, approaches the resonance, electrons start to
tunnel due to the temperature gradient, which gives rise to a
voltage drop under the condition of vanishing current. This
voltage drop for the first accessible state with energy ε1 is
positive, but S in units k/e is negative because of the negative
electron charge. When ε1 reaches the resonance, currents due
to electrons and holes compensate, so the charge current as
well as thermopower vanish at resonance. The situation is
similar for other resonant states. Thermopower S changes the

a b

Figure 3. Thermal conductance as a function of gate voltage and temperature for Q = 0.9 (a) and cross-sections of κ for several values of
kT (b). Other parameters as in figure 1.
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a b

dc

Figure 4. Thermopower as a function of gate voltage for kT = 2�, Q = 0 (a) and Q = 0.75 (b). Temperature and gate voltage dependence
of S for Q = 0.9 (c) and cross-section for kT = 16� (d). Other parameters as in figure 1.

sign, when one of the available states crosses the Fermi energy
and for two-level QD twelve such states are possible, which
correspond to the poles of the Green function (equation (2)).
For the assumed set of parameters only ten different states
can appear. Peaks corresponding to all these states are clearly
visible in the thermopower spectrum at low temperatures, but
their intensities are different and described by the probabilities
of particular configurations. For Q = 0, similarly as in the
electrical conductance G, four peaks dominate (figure 4(a)).
However, also those states, which are hardly involved in the
conductance contribute to S and lead to well distinguished
peaks. In particular, the transmission through the singly
occupied level 1 or 2, in the situation when the other one
is empty, is low and such configurations hardly contribute
to electron or heat transport at low temperatures. However,
the appropriate peaks are clearly visible in the thermopower
spectrum (two central peaks), although their intensities are
considerably lower. When Q increases, level ε1 becomes
strongly coupled to the electrodes leading to the enhancement
of the electric conductance (peaks 1 and 3 in figure 1(a)). As a
result the appropriate peaks in S are lowered. At the same time
level ε2 is gradually decoupled and transmission through this
level is suppressed, leading to a considerable increase of the
appropriate peaks in the thermopower spectrum. For higher Q
the spectrum is dominated by two peaks corresponding to the

states ε2+U12, ε2+U+2U12 (figure 4(b)). At low temperatures
all the peaks are very narrow, but their width increases
with temperature, as presented in figures 4(c) and (d). The
thermopower then varies gradually, showing broad maxima
and minima. At high temperatures a considerable broadening
of the distribution function appears. Then the currents due to
tunnelling electrons and holes may not compensate exactly at
each resonant state. As a consequence the thermopower does
not change sign at each resonance. The curve S(Vg) is strongly
asymmetric at high temperatures, as depicted in figure 4(d).

The thermal efficiency of the system is expressed in terms
of the electrical conductance G, thermal conductance κ and
thermopower S as Z T = GS2T

κ
, which is known as the figure

of merit. It is presented in figure 5 for several values of the
parameter Q. At low temperatures (kT = 2�) typical double
peaks with narrow valleys, corresponding to gate voltages for
which thermopower vanishes, can be observed, similarly to
systems with single-level dots [39]. However, the number of
lines is considerably greater and their intensities are different.
For Q = 0, both levels are equally coupled to the electrodes,
and the four structures which dominate the spectrum are of the
same intensity. They correlate well with appropriate peaks
in the thermopower and electrical conductance. When Q
increases the intensities of all peaks change. The highest
intensity is obtained in the situation when the level ε2 + U12

5
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Figure 5. Figure of merit as a function of gate voltage for kT = 2�
and several values of Q. Other parameters as in figure 1.

or ε2 + U + 2U12 is aligned with the Fermi energy in the
leads (figure 5). So, the main contribution to the Z T spectrum
comes from level 2, weakly coupled to the external electrodes.
Z T is then enhanced due to a considerable increase of the
Seebeck coefficient S and moreover, due to suppression of the
thermal conductance. The system shows the highest efficiency
for 0.75 < Q < 0.95. Then, the optimal conditions for
high efficiency can be fulfilled with small thermal conductance,
but relatively high electrical conductance. For larger Q
level 2 becomes decoupled from the leads, so the electrical
conductance through this level is strongly suppressed and the
efficiency of the system with respect to thermoelectricity starts
to drop. With an increase of temperature the appropriate
structures broaden (figure 6). The intensities of the two peaks,
which dominate at low temperatures, become reduced due
to a considerable increase of the thermal conductance. At
higher temperatures they are relatively small, especially the
peak corresponding to the state ε2 + U12, as the thermal
conductance κ in this region of gate voltages is especially
high. On the other hand, Z T considerably increases with
increasing temperature for small gate voltages. Then, the state
ε1 is active in electrical transport, but the energy transport is
strongly suppressed, as presented in figure 3(b). For kT ≈
16� the Z T spectrum is dominated by the broad peak which

develops in this region. The double peak with lines of relatively
high intensity, appearing in the spectrum at higher values
of Vg, corresponds to the valley in the thermal conductance
(figure 3(b)). Therefore, in the system under consideration,
the changes of κ with temperature fully determine the ZT
spectrum, especially at higher temperatures.

4. Thermoelectric properties of two coupled
quantum dots

Up to now, we have discussed thermoelectric coefficients for a
QD with two levels ε1 and ε2, whose positions were tuned with
the gate voltage. The distance between levels �ε = ε2 − ε1

was treated as a constant. Now, we consider two QDs coupled
capacitively, whose levels ε1 and ε2, initially aligned and equal
to ε0, are then tuned with additional gate voltages in such a
way that they move apart as ε1 = ε0 − τ and ε2 = ε0 +
τ . One can also consider two dots coupled via tunnelling
processes. The two-dot system then represents an artificial
molecule and can be described in terms of the effective two-
level dot weakly coupled to external electrodes [46, 47]. New
levels, corresponding to the molecule, are usually called the
bonding and antibonding ones. In the situation when the levels
of both dots were aligned and equal to ε0, the molecular levels
appear at energies ε0 ± τ , with τ describing the coupling
strength between the dots. As τ can be easily tuned in an
experimental set-up it is reasonable to discuss changes in
the thermoelectric spectra when the coupling strength τ is
varied. With an increase of τ , the molecular levels move apart.
Changes of thermoelectric coefficients with τ and gate voltage,
which coherently shift the levels in both dots, are presented
in figure 7 for kT = 2�. Assume first that τ is negligibly
small. Then, molecular levels are close to each other and four
states contribute to transport with one of energies ε0, ε0 + U12,
ε0 + U + U12, ε0 + U + 2U12 crossing the Fermi level in
the leads. When the gate voltage is changed successive states
become active in the transport, leading to peaks in the electrical
conductance (figure 7(a)) and in the thermal conductance (not
shown here). The intensities of the peaks are similar. With an
increase of τ , tunnelling processes between the dots become
important, so the level ε0 is split and the levels move apart,

a b

Figure 6. Z T as a function of gate voltages and temperature (a) and cross-sections for several values of kT (b) calculated for Q = 0.9. Other
parameters as in figure 1.
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a b

c

Figure 7. Electrical conductance G (a), thermopower S (b) and Z T (c) in dependence on gate voltage and τ for two QDs. Parameters used:
kT = 2�, Q = 0, ε0 = 0.25 meV. Other parameters as in figure 1.

the bonding one to the right and the antibonding one to the
left. At low gate voltages (Vg close to zero) the level ε0 − τ

is active in the transport, but the antibonding state with energy
ε0+τ hardly contributes to the transmission and due to its small
intensity the corresponding line cannot be seen in the electrical
conductance depicted in figure 7(a). The situation is reversed
at higher values of gate voltage.

The low lying bonding state is singly occupied and the
probability of transmission through this state is small at low
temperatures. Then, unoccupied antibonding state is mainly
active in the transport, leading to a high intensity line at energy
ε0 + τ + U12. With τ increasing this line moves to the left
towards higher values of Vg. A similar behaviour can be
observed for the Coulomb counterparts of the bonding and
antibonding levels. The third peak which can be seen in the
conductance G corresponds to the situation when both levels
ε0 − τ , ε0 + τ are singly occupied and the second electron
with opposite spin tunnels through the lower state when the
energy ε0 − τ + U + U12 approaches the Fermi level. The
appropriate line has high intensity and moves to the right
with τ increasing. Finally, the last, fourth line corresponds to
ε0 + τ + U + 2U12 with the bonding state doubly occupied.
Although the tunnelling coupling τ between the dots leads
to the level splitting, only one of these split states can be
active in the transport, leading to the high intensity line in
the electrical conductance. The thermal conductance shows
a similar behaviour, with line positions correlating well with
those in G (not presented here).

Thermopower as a function of gate voltage is depicted
in figure 7(b). It oscillates with Vg and shows several
maxima and minima of different intensities. The splitting
of the levels with increasing τ can be clearly seen. The
intensities of the peaks are different. The highest intensity
corresponds to these four peaks which dominate the linear
conductance. However, antibonding (bonding) states, empty
or singly occupied, which are almost inactive in electron
transport, contribute considerably to the thermopower, leading
to well-defined peaks. Moreover, in the centre of the
spectrum two additional peaks develop. They correspond to
the situation when an electron tunnels through the occupied
bonding or antibonding state, whereas the second state is
empty. Probabilities of such configurations are low, so the
intensities of the lines are also low.

Similar behaviour is seen for the figure of merit Z T in
which ten double lines can be seen for intermediate values of
τ (figure 7(c)). There are four such lines with high intensity,
two corresponding to bonding states and two for antibonding
ones, as well as four lines with lower intensity. Finally in the
centre of the spectrum two additional lines with small intensity
correspond to transport through occupied states. The peak
intensity hardly changes along a given line when the coupling
between dots is changed. The presented results show that in
two-dot systems the probability of a given configuration with
an electron occupying the bonding or antibonding state plays
an important role and strongly influences the line intensities
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in the spectrum. The line position can be easily manipulated
when τ is varied.

5. Summary and discussion

Here, we have studied the electrical and thermal properties
of quantum dots attached to external electrodes. The
approach, based on the Green function formalism, allows
us to determine the probabilities of various configurations
accessible for the system with two levels active in the transport.
These temperature-dependent weights strongly influence the
transport properties. Additional selection of channels active
in the transport can be obtained for a molecule due to a
level-dependent coupling strength with external electrodes,
described here by the parameter Q. Such a selection can lead to
a negative differential conductance Gdiff, as well as essentially
influencing the energy transfer. At low temperatures, owing
to Coulomb blockade effects, well-defined peaks develop
in the thermal conductance with their intensity strongly
depending on the parameter Q. At high temperatures, peaks
in κ evolve in the wide band, but with large maxima and
deep valleys, so that channels with strongly reduced energy
transfer can be found. In these regions of gate voltage the
tendency towards thermoelectricity is considerably enhanced
and optimal conditions for the effect are fulfilled, as the thermal
conductance is relatively low, while the thermopower and
electrical conductance are quite high. There is the possibility
of strong modifications of Z T when parameter Q is changed.
The study presented shows that the physics of multilevel dots is
much richer than for the case of single-level dots and moreover,
a considerable enhancement of thermoelectric efficiency can be
obtained.
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